Critical thermal minima (CTmin) values were determined for the Pacific white shrimp Litopenaeus vannamei juveniles at combination of four different acclimation temperatures (15, 20, 25, and 30°C) and salinity levels (10, 20, 30, and 40‰). The lowest and highest CTmin of shrimps ranged between 7.2°C at 15°C/30‰ and 11.44°C at 30°C/20‰ at cooling rate of 1°C h-1. Acclimation temperature and salinity, as well as the interaction of both parameters, had significant effects on the CTmin values of L. vannamei (P<0.01). Yet, the results showed a much more profound effect of temperature on low thermal tolerance of juveniles. Only, 40‰ salinity had an influence on the CTmin values (P<0.01). As the acclimation-temperature was lowered from 30°C to 15°C, the thermal tolerance of the shrimp significantly increased up by 3.25–4.14°C. The acclimation response ratio (ARR) of the Pacific white shrimp exposed to different combinations of salinity and temperature ranged from 0.25 to 0.27. When this species is farmed in sub-tropical regions, its pond water temperature in the over-wintering facilities (regardless of the water salinity level) must never fall below 12°C throughout the cold-season to prevent mortalities.
Thermal tolerance of Whiteleg Shrimp
Critical thermal minima (CTMin) and maxima (CTMax) values were determined for the Pacific white shrimp Litopenaeus vannamei post-larvae and juveniles at four different acclimation temperatures (15, 20, 25, and 30 °C). The CTMin of shrimp at these acclimation temperatures were 7.82, 8.95, 9.80, and 10.96 °C for post-larvae and 7.50, 8.20, 10.20, and 10.80 °C for juveniles, respectively, at 1 °C/h cooling rate. The CTMax values were 35.65, 38.13, 39.91, and 42.00 °C for post-larvae and 35.94, 38.65, 40.30, and 42.20 °C for juveniles at the respective acclimation temperatures. Both acclimation temperature and size of the shrimp affected CTMin values of L. vannamei (P<0.01). Overall, juveniles displayed significantly lower CTMin values than the post-larvae (P<0.0001). However, the CTMax response by post-larvae and juveniles were not significantly different from each other and no interaction was determined between the acclimation temperature and development stage (P<0.01). The area of the thermal tolerance polygon over four acclimation temperatures (15, 20, 25, and 30 °C) for the post-larvae of L. vannamei was calculated to be 434.94 °C. The acclimation response ratio (ARR) values were high ranging from 0.35 to 0.44 for both post-larvae and juveniles. L. vannamei appears to be more sensitive to low temperatures than other penaeid species and its cold tolerance zone ranged from 7.5 to 11 °C. In successful aquaculture temperature must never fall below 12 °C to prevent mortalities. Upper thermal tolerance is less of a problem as in most subtropical regions maximum water temperature rarely exceeds 34 °C, but care should be given if shallow ponds with low water renewal rate are being used.
Link to article, http://www.sciencedirect.com/science/article/pii/S0306456510000653
Off-season Maturation and Spawning of Whiteleg Shrimp in Subtropical Conditions
This study deals with investigations on how to control off-season maturation and spawning of Pacific white shrimp Litopenaeus vannamei by using various maturation techniques. For the experiment, the broodstock were separated into five groups (Group 1: Control, Group 2: Serotonin-injected, Group 3: Ablated, Group 4: Temperature-fluctuated, and Group 5: Another ablated groups). Each of the first four groups were stocked into a 2-m diameter round tank at density of 9.44 shrimps per m2 (2:1, female/male), while Group 5 were stocked into a 3-m diameter tank at density of 5.67 shrimps per m2 (1:1, female/male). The experiment continued for 2 months until maturation in a recirculation system. Each female was tagged and any ripe female carrying a spermatophore was removed to spawn individually in a spawning tank. The first spawnings occurred on 25-28th days of the experiment in all the groups. The highest female spawning rate (55-90%) and fecundity (79,778-125,015 eggs) were obtained in the eyestalk-ablated groups (P<0.05). Serotonin (Group 2) induced ovarium development in 35% of the females, generating 60,277 eggs per female. Cyclic temperature fluctuation (Group 4) stimulated ovarium maturation in 39% of the females with a mean fecundity of 28,500 eggs per female (P<0.05). Mean egg fertility rates ranged from 63.08% to 96%, and hatching rates from 8.53% to 31%. Spawning, fecundity and hatching rates were found to be different between the two eyestalk-ablated groups (Group 3 and 5), and the reasons were thought to be due to tank size and/or shrimp stocking density. Our broodstock displayed poor reproductive performance with abnormal egg morphology and low egg hatching rates. The stress caused by off-season reproduction and low genetic variation due to past selective breeding programs might have seriously hampered the reproductive performance of our broodstock. The results of this study has demonstrated that, under Mediterranean climatic conditions, the broodstock of this non-indigenous shrimp species can be readily matured and spawned out of season in recirculating systems.
Link to full text: http://www.trjfas.org/pdf/issue_11_01/0103.pdf